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Numerical Exploration of a Family of Strictly Convex 
Billiards With Boundary of Class C 2 
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We are interested in the possible existence of strictly convex ergodic billiards. 
Such billiards are searched for by means of numerical investigation. The bound- 
ary of a billiard is built with four arcs of class C ~'~. Adjacent arcs have equal 
curvatures at connecting points. The surface of section of tile billiards is 
explored. It seems as if symmetric billiards always have invariant curves 
(islands). Asymmetric billiards have been found which look ergodic. They are 
built with an arc of an ellipse, two arcs of circles, and one-half of a Descartes 
oval. 
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1. I N T R O D U C T I O N  

Let g2 be an open region of R 2 whose boundary is a strictly convex oriented 
closed curve 0/2 of class C k, k >/2. A billiard in /2  is the dynamical system 
defined by either the free motion of a particle or a light ray in the interior 
of this enclosure with specular bounces or reflections on the boundary. 

A convenient way to explore the properties of a billiard is through the 
surface of section. We look at successive reflections. Let q be the length, 
measured along 0f2, from the point of impact to an arbitrarily chosen 
origin, and 0 the oriented angle measured from the normal to 0f2 at the 
point of impact to the incident ray. We suppose that 0g2 has unit length. 
We take as coordinates in the surface of section 1/and S = sin 0. It is clear 
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that 0 ~< 11 ~< 1 and ISI < 1. The surface of section is then identified with the 
rectangle 

/ 7 =  {(q, S)~R2;  0~<r/~< 1, --1 < S <  1} 

The trajectory in the billiard is represented by a map q~: H-~  H that 
preserves the Lebesgue measure dr 1 dS. 

2. CAUSTICS AND I N V A R I A N T  CURVES 

A closed convex curve ~' inside 012 is said to be a caustic of 012 if it 
is such that a ray that leaves 012 being tangent to c# remains so after reflection 
on 0/2. The caustic is oriented like 012. 

It is known ~-3~ that if the boundary of the billiard is sufficiently 
smooth (k~>6) there is a discontinuous family of caustics in a small 
neighborhood of 012 and the union of caustics has positive measure. To 
every caustic of 012 of class C", v >/2, �9 associates an invariant curve of 
class C v- ~ in the surface of section; it is the graph of the mapping which 
associates to q the sine of the oriented angle between the normal at the 
point of coordinate I /and the tangent to c# drawn from that point. 

Invariant curves in the surface of section may either run from edge 
q = 0 to edge r /= 1 (that is the case for those invariant curves associated 
with caustics close to the border of the billiard) or have the shape of 
islands surrounding invariant points which correspond to stable periodic 
orbits in the billiard. 

It is well known that if 012 is an ellipse, the surface of section is filled 
with such curves and the billiard is said to be integrable. 

We say that a billiard is ergodic if there are no invariant curves the 
union of which has a positive measure in the surface of section. 

3. A F A M I L Y  OF BILLIARDS OF CLASS C 2 

According to refs. 1-3, it is clear that a strictly convex billiard with 
sufficiently smooth boundary cannot be ergodic. Is this still the case when 
the boundary is not so smooth? 

Numerical exploration of several families of strictly convex asymmetric 
C' billiards built with four arcs of circles c4~ has shown that there are 
billiards belonging to these families that are candidates for ergodicity. 

By the same method we have searched for billiards with C 2 boundary 
that may be ergodic. We started by exploring billiards with either one or 
two axes of symmetry constructed with four arcs of circles or ellipses. We 
found that such billiards always have islands in their surface of section. 
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This seems to be the case also for more sophisticated billiards with only 
one axis of  symmetry, for instance, billiards constructed with two arcs of  
a circle, one arc of  an ellipse, and half of  a Cassini oval. It seems as if 
symmetric billiards (with either one or two axes of  symmetry) always have 
elliptic invariant points in the surface of  section which correspond either to 
a periodic orbit along the minor diameter or to a multiple periodic orbit 
that lies close the minor diameter. See refs. 4 and 5 for examples of  such 
orbits. 
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Fig. 1. The construction of the upper part of  the billiard. 
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The general shape of a billiard. 

This is the reason why we investigated asymmetric billiards. Figures 
l a - l h  and 2 describe the construction of a family of such C 2 billiards. To 
construct a billiard of the family, proceed as follows. 

(a) On the upper half (Ez E2) of the ellipse of  semimajor axis 1 and 
semiminor axis b take a point -42 with abcissa 1 - 8  (8 > 0). Find the center 
of curvature a2 of the ellipse at point .42. The corresponding radius of 
curvature is P2. 

(b) Shift the figure parallel to the y axis so as to bring a 2 on the 
x axis. 

(c) Drop arc .42E1 

(d) Rotate arc E2.42 around a2 by an angle - ~ ( ~  > 0); ~ has to be 
smaller than some ~m.x (which would bring A2 on the x axis) in order for 
the construction to proceed. 

(e) Construct the arc of circle A2A J with center a2 and radius P2- 
Point A I is on the x axis. 

(f) Find the point .43 on the arc of ellipse A2E2 such that the center 
of curvature a3 at A 3 is on the x axis. The corresponding radius of 
curvature is ,0 3 . 

(g) Drop arc E2A3. 

(h) Construct the arc of circle A3.4 4 with center a 3 and radius ,0 3. 
Point A4 is on the x axis 

Construct as in Fig. 2 the lower half Descartes oval (y < 0 )  passing 
through .44 and A1 and such that the radius of curvature of the oval at A 4 
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(resp. A3) is P3 (resp. P2). Let us recall that a Descartes oval is the locus 
of the points M of the plane such that given two fixed points F and F' ,  one 
has MF+ kMF' =2a ,  where k >  0, k q: 1. A Descartes oval is an algebraic 
curve of degree 4. If the length of the major diameter and the radii of 
curvature at the ends of the major diameter of the oval are given, the oval 
is unique. 

4. N U M E R I C A L  E X P L O R A T I O N  OF THE B ILL IARDS 

We have defined in this way a three-parameter family of billiards. The 
parameters are b, fi, and ~, which will be given in degrees. 

The natural coordinates in the surface of section are t/, S (A~ is taken 
as origin for the t/'s). As 11 and S are canonically conjugate, the corre- 
sponding Poincar~ map is area preserving. However, it is more convenient 
to use the angle ~=A~M instead of t/; see Fig. 3 (~ is a continuous 
function of r/). Although the map of the surface of section onto itself does 
not preserve the measure dqb dS, the topology of invariant curves is 
unchanged. 

Figures 4a-4f  show the surfaces of section for billiards with b = 0.09, 
= 0.05, and several values of 0~. For  these values of b and fi one has 

~max = 74.686 .... 
Computations have been performed in double precision; 106-107 

bounces have been computed for each billiard. The representation of the 
surface of section is discretized in a square containing 512 x 512 cells, as in 
ref. 4. 

Fig. 3. The geometry of a bounce. 
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Fig. 4. The surface of section of six billiards of the family b = 0.09, ~ = 0.05. The billiard with 
ct = 0 has one axis of symmetry. All other billiards are asymmetric. The billiard with ct = 30 
looks ergodic. 



Strictly Convex Billiards 77 

When ~ = 0 the billiard is symmetric with respect to the y axis. It is 
asymmetric when a ~- 0. The periodic orbit along the major diameter of the 
billiard is always unstable, t61 The periodic orbit along the minor diameter 
is stable for billiards with 0 ~<a< 12.05...; Fig. 4a shows the surface of 
section of the billiard c~ = 0. The large central islands encircle two invariant 
points which correspond to the stable periodic orbit along the minor 
diameter of the billiard. The islands are filled with invariant curves (not 
shown on the figure). Figure 4b is for the billiard a = 10. The periodic orbit 
along the minor diameter is again stable. This orbit is unstable for billiards 
with 12.05... < ~ < 42.87... and again stable for billiards with 42.87... < ~ < 
Ctma x. For  0t = 12.05... one observes the first of a series of bifurcations with 
period doubling of the orbit along the minor diameter of the billiard. 
Figure 4c is for the billiard 0~ = 20. The four central islands are around the 
invariant points which correspond to a 2-periodic orbit that lies close to 
the minor diameter of the billiard and starts normally to the boundary 
(S = 0). The islands are filled with invariant curves (not shown). Figure 4d 
is for the billiard a = 2 2 .  It shows islands around the 14 invariant points 
associated with a periodic orbit which does not belong to the cascade men- 
tioned above. 

A systematic exploration conducted by giving to ~ all permissible 
values show that billiards look ergodic in a whole range of values of 
beyond the limits of period doubling. The billiard with a = 30 is an example. 
However, this result cannot be taken for granted even from the numerical 
exploration point of view, as it is known that islets of stability can be found 
beyond period-doubling limits. This is shown, for instance, in ref. 7. Such 
very small islands could be undetectable at the scale of our figures (and 
even at a larger scale). 

5. THEORETICAL ASPECTS 

The suggestion that the above billiard with ct = 30 is ergodic may seem 
in contradiction with a conjecture stated by Bunimovich. tS~ It is known 
that the mechanism of strong defocusing is the only one that produces 
chaos in billiards with focusing components of the boundary. Bunimovich 
makes the conjecture that if a billiard has a regular focusing component 
which is not  absolutely focusing, then the billiard has a stable periodic 
orbit. (See ref. 8 for the definitions of focusing and absolutely focusing 
components and the mechanism of defocusing.) 

A piece of one of the regular components of the above billiard with 
= 30 is part of the half-ellipse with an axis ratio of 100/9 > v/2. The half- 

ellipse is not  absolutely focusing, tg~ but it is not clear if the same is true for 
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the arc that has been taken in the construction of the billiard. We could 
not determine if the half oval is not absolutely focusing. 

We tried nevertheless to find experimentally a stable periodic orbit 
along the lines suggested in ref. 8. The method consists in looking for 
parallel beams of rays that become almost parallel, but converge after a 
series of consecutive reflections from the elliptical component or from the 
oval component. 

We could not find such beams. We do not claim they do not exist, 
because we explored only a fraction of all possible situations. However, this 
negative result is not very surprising, because Fig. 4e suggests that were a 
stable periodic orbit to exist, the region of stability islands would be very 
small. 

6. CONCLUSIONS 

If billiards of the C 2 family described above do not have caustics along 
the border, numerical exploration seems to suggest that some of them 
could be ergodic. This may be in contradiction with a conjecture by 
Bunimovich on billiards with components which are not absolutely focusing. 
If the billiards are not ergodic, stability islands in the surface of section are 
extremely small. 
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